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Abstract

Financial profitability analysis is a substantial preliminary study topic and a key decision criterion when designing and building a PV system, both for small residential use and for commercial
purpose. In this context, energy storage has increased the capability for maximizing the energy self-consumption and the profitability of PV systems, but it has also complexified the
optimization strategies. Battery storage in a PV system allows to displace the usage of the solar generated power to times where consumption is needed. However, the sizing of the optimal
system depends on many factors, such as meteorological data, load profile, battery size and price, feed-in tariffs, etc. PVsyst is a simulation software used to model PV systems, from small
residential size up to large utilities. The new economic evaluation tool included in the software allows to perform a detailed analysis, producing key financial indicators such as the CAPEX
(Capital Cost of the Investment), LCOE (Levelized Cost of Energy), payback time and return on investment (ROI). The aim of this study is to establish a methodology for the optimization of PV
systems with self-consumption and storage. The optimization of several economic variables, based on parametric simulations, will be presented. We will analyze the impact of the PV array and
battery capacity on the profitability of the system, for different external conditions like the selling/buying tariffs, the load profile and the geographical location.
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Summary and Outlook

We presented a general way to optimize the sizing of a PV system with storage and self-consumption. The criteria for optimization were the maximization of either the net present value (NPV)
or the return of investment (ROI). To understand the impact that self-consumption and storage have on the economic variables, we broke down the analysis into three steps. First, we
considered the bare generation and selling of energy to the grid, to which we added the contribution of direct self-consumption. After this, we examined how adding storage to the system
influences the economic variables.

The key to understanding these economics, are the curves describing the amount of self-consumption as function of the PV and battery capacity. We then showed, that for a given yearly load
profile, these curves can be estimated from a single simulation. The optimal sizing obtained from this approximation corresponds to the detailed search of the optimum by performing many
individual simulations.

The insights obtained in this study will be used to implement tools in the PVsyst software that will guide the user efficiently when optimizing a PV system with storage.




