

Accounting for sub-hourly irradiance fluctuations in hourly performance simulations

40th European Photovoltaic Solar Energy Conference and Exhibition - September 18-22, 2023 - Lisbon, Portugal

Agnès Bridel-Bertomeu, André Mermoud, Michele Oliosi, Bruno Wittmer PVSYST SA, route de la Maison-Carrée 30, CH 1242 Satigny - Switzerland

Abstract

Hourly performance simulations tend to report higher yields than sub-hourly performance simulations. One reason is that the clipping losses due to sub-hourly irradiance fluctuations will be underestimated in hourly simulations. In a previous work [1], we developed a model to estimate these extra clipping losses; it can be used to remove most of the yearly discrepancy between minute-level and hourly results.

In this work we show how part of the remaining yearly discrepancies are an artefact from applying transposition models at the sub-hourly level. Taking as example the widely used Perez model, we propose a way to correct the diffuse decomposition coefficients in the minute simulation, which further reconciliates hourly- and minute-level simulations.

Sub-hourly fluctuations and	d impact on clipping	Results of the model					
Clipping is always underestimated Ou	Our solution using minute data:	 288 simulations: → 4 sites - 2020 data → 18 Orientations (1 SAT) → 4 DC: AC ratios 	Hour-minute discrepancy across si			mulations (Perez)	
by the hourly simulation:	Minute-level	Clipping losses - without correction Clipping losses - corrected	50 DC/AC ratio	Corrected	DC/AC ratio	MBE [%] (Correcte
	weather data		+ 30 - 1 4 00		1.33	2.12	0.58
No clipping with hourly average Clipping with hourly avera					1.67	3.29	0.67
					2	3.84	38.0
	Aggregate to $ $ Extract hourly $ \rangle \leq Q'$		<u>응</u> 10 2		Total	2.57	0.76

The clipping correction model largely removes the bias on the clipping losses.

The corrected hourly simulations still yield on average 0.8 % more than the minute-level simulations.

Question: where does the remaining discrepancy come from?

Transposition bias

Discrepancy exists already after transposition (GTI).

Discrepancy propagation

Using a simpler transposition model reduces the bias.

Hay transposition: the decomposition between diffuse compo-

Non-linearity of the Perez diffuse decomposition

Perez transposition model

The Perez diffuse decomposition is based on **48 coefficients:** 6 factors $F_{1i}(\epsilon)$ and $F_{2i}(\epsilon)$, j=1,2,3 each for 8 Clearness *e* bins.

 $F_1 = F_{11} + F_{12}$ Brightness + F_{13} Zenith angle

discriminates isotropic diffuse = $(1-F_1)$ DHI from circumsolar = F_1 DHI

 $F_2 = F_{21} + F_{22}$ Brightness + F_{23} Zenith angle

determines the horizon band = F_2 DHI

* not present in Hay model

The **48 F_{ii}(e)** coefficients were originally derived from hourly and 15-minute measurements. The coefficients are not adapted to minute-level data.

nents is less non-linear. This generates less discrepancies.

Average profile of discrepancies by irradiance components (avg. of 1 simulation)

Can we find better Perez coefficients for the minute diffuse decomposition?

Fit coefficients with the **hourly horizontal diffuse values as a reference. Result : new Perez coefficients** that can be applied to minute-level data.

Answer: Yes!

Discussion and outlook

New Perez coefficients:

• Procedure should be applied to larger minute datasets

• Largest differences for F₁₂ and F₂₂, in 2 clearness bins

Remaining discrepancies:

- Direct component should be corrected in the hourly simulation, but has a small impact
- The clipping correction model (at DC to AC conversion) can still be improved

Summary After applying the sub-hourly clipping correction [1]: hourly simulations still report higher yields than minute

simulations, but by less than 1%.

- Non-linear steps in the Perez transposition model account for most of the remaining discrepancy. In particular, the diffuse decomposition step.
- The discrepancy from the diffuse decomposition step is an artefact of the Perez model on sub-hourly scales.

We propose a methodology to find new Perez coefficients that can be used when transposing minute-level data.

- It replicates the original Perez transposition applied on hourly data.
- Using the Hay transposition leads to a similar level of discrepancies

[1] Villoz, Wittmer, Mermoud, Oliosi, Bridel-Bertomeu, 2022. A Model **Correcting the Effect of Sub-Hourly Irradiance Fluctuations on Overload Clipping Losses in Hourly Simulations.** 8th World Conference on Photovoltaic Energy Conversion.

We acknowledge the use of data from the Measurement and Instrumentation Data Center (MIDC), NREL. We refer the reader to [1] or to the MIDC website for the appropriate sources.