Skip to content

Battery efficiency and losses

Global Losses

The global battery loss (EBatLss) is defined as: $$ \text{EBatLss} = \text{EBatCh} - \text{EBatDis} - \text{ESOCBal} $$ where:

  • EBatCh is the energy injected into the battery,
  • EBatDis is the energy drawn from the battery,
  • ESOCBal is the stored energy balance between the beginning and the end of the interval (SOCEnd − SOCBeg).

Additionally, the overall battery efficiency (EffBatE) is defined as: $$ \text{EffBatE} = \frac{\text{EBatDis} + \text{ESOCBal}}{\text{EBatCh}} $$ Note that the battery efficiency is only meaningful over a sufficiently long period, so that ESOCBal is a small contribution with respect to the EBatDis value.

Detailed Losses

The battery efficiency includes the following losses:

The table below shows when each individual loss is applied. Note that the losses applied to the ESOCBal term vary depending on whether the battery is charging or discharging. This state is fixed for each simulation time step.

Energy Losses applied Description
EBatCh Charging energy, at VBattery
Eoverload Overload/overvoltage (gassing with lead-acid, ResInt with Li-ion)
Eohmic Internal ohmic loss: ResInt × IBattery
Eefficl Faradic (current) efficiency, reduction of the charging current
ESOCBal (charging) Stored energy: VOCbattery × IBattery × DTime / Capacity
SOC state SOCend = SOCbeg + IBattery × DTime / Capacity
Eself-disch Self-discharge permanent current (loss)
ESOCBal (discharging) Stored energy: VOCbattery × IBattery × DTime / Capacity
Eohmic Ohmic loss: ResInt × IBattery
EBatDis Discharging energy at VBattery

Efficiency evaluation

The efficiency over a running period cannot be accurately recalculated from the accumulated values because:

  • Ohmic losses are proportional to the square of the current, IBattery²
  • The capacity depends on instantaneous conditions (charge/discharge rate); therefore, the SOC evolution is only valid when using instantaneous values
  • The voltage is specific to each operating condition, so an average voltage cannot be used
  • The temperature, which affects voltage and resistance, may vary during the period

As a result, the values shown in the final loss diagram cannot be fully consistent. The battery efficiency evaluation is therefore based on the final accumulated energy losses. In particular, due to the sensitivity to capacity variations, it may depend on the load power distribution (ESOCCharge and ESOCDischarge are not always well defined).

NB: A more detailed description is available on the page describing the use of the battery model during the simulation.